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ABSTRACT

We developed an equation of state for systems containing chain-like molecules.
The equation consists of three contributions. As a reference, we first adopted the
equation for hard-sphere-chain fluids (HSCF) derived through the r-particle cavity-
correlation function of sticky hard spheres. The HSCF equation has a simple form
similar to the Carnahan-Starling equation and has been satisfactory tested by
computer-simulation results for chain fluids with a wide range of chain length.
Secondly, for perturbation, we used the square-well equation (SW). Thirdly, for
molecules with specific oriented interactions such as hydrogen bonding, we
introduced contribution from chemical association (ASS). The corresponding
expression for association comes naturally from the sticky model used in deriving the
reference equation. The ASS term was well tested with computer-simulation results
for associated molecules.. The equation of state was widely tested by fitting
experimental vapor-liquid equilibria. For liquid-liquid equilibria, we adopted a lattice
model developed previously as a high-pressure limit that virtually serves as a mixing
rule.

1.  INTRODUCTION

In recent years, much attention has been given toward development of an
equation of state for an assembly of chain-like molecules in the free-space (off-lattice)
forms. We have made efforts in the same line and developed a HSCF equation [1,2]
through the r-particle cavity-correlation function of sticky hard spheres based on the
model of Stell, Cumming and Zhou [3,4,5]. The HSCF equation has a simple form
similar to the Carnahan-Starling equation and has been satisfactory tested by
computer-simulation results for chain fluids with a wide range of chain length. Later,
we developed a practical equation of state [6] by combining the HSCF equation with
a square-well (SW) perturbation term from Alder et al’s work [7].

For ordinary fluids and fluid mixtures, nonideality is usually attributed to
physical forces between molecules. However, for carboxylic acids, alcohols, phenols,
amides, water and their mixtures, as well as some mixtures of non-associating
substances such as acetone and chloroform, self-association or cross-association
occur between molecules due to hydrogen bonding. In these cases, chemical theories
of association are always adopted in addition to the physical interactions to account
for the nonideal behavior. Earlier work based on equations of state was almost
exclusively using phenomenological approach (e.g. Heidemann and Prausnitz [8], Hu,
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Azevedo, Ludecke and Prausnitz [9], Hong and Hu [10]). Recently, there has been
substantial progress in the statistical mechanical theories of association which provide
deeper insight into the structure of the fluids containing associated molecules (e.g.
SAFT equation by Chapman, Gubbins, Jackson and Radosz [11], shield-sticky theory
by Zhou and Stell [5]). The above HSCF equation can also be extended to fluids
containing associated molecules.

In this work, we present a practical equation of state for chain-like molecules
either associated or non-associated. The equation consists of three contributions, i.e.,
a HSCF equation as a reference, a SW term as a perturbation, and an association
term (ASS) accounting for the specific interactions. The equation of state is widely
tested by fitting experimental vapor-liquid equilibrium and liquid-liquid equilibrium
data.

2. EQUATION OF STATE FOR PURE FLUIDS

Real fluids containing associated chain-like molecules can be approximated by a
square-well-chain fluids with association between molecules. For a pure-component
system of molecules with chain length r, the residual Helmholtz function Ar and the
compressibility factor Z can be expressed as:

A A A Ar r= + +( ) ( )HSCF SW (ASS)∆ ∆ (1)
Z Z Z Z= + +( ) ( )HSCF SW (ASS)

(2)

where superscripts denote the contributions of HSCF, SW and ASS, respectively.

Theoretical Basis

We consider a system composed of species S which can form linear r-mer
associates Sr by the reaction rS⇒Sr . By adopting the sticky-point model of
Cummings and Stell [3] for each nearest-neighbor pair, the Mayer function for a
group of r segments can be expressed as:
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where variables rij and rij are the inter-segment distance vector and the corresponding
mode, respectively for segments Si and Sj , m is the number of different interaction
configurations for each nearest-neighbor pair Si-Sj, each configuration is
characterized by an inter-segment distance vector Lk, k=1-m , originated from a
definite number of interaction sites on each segment. The corresponding mode is L
irrespective of k. Symbol δ is a Kronecker delta, σ  is the collision diameter, τ −1  is

an association parameter called stickiness parameter, ε ( )r  is the attractive energy.
The corresponding r-particle total correlation function when rij < σ  can be written as
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where λ  is a distribution parameter theoretically determined by τ −1 .

For a pure-component fluid with a total number of monomers N0, including
both unassociated and associated, the corresponding  number density ρ0=N0/V , the
degree of association α  could be defined as:

α ρ ρ ρ≡ = ∫−
− −−

+r r g d d d rr r
r r r rr / ( , ,..., ) ... / !( )

, ,0 0
1

12 23 1 12 23 1L

L r r r r r r (5)

where ρr is the number density of the r-mer, g r( )
 is the r-particle radial distribution

function,  h gr r( ) ( )= −1 . Substitution of eq.(4) into eq.(5) yields

( )α ωρ λ π= −− −

0
1 3 1

3 1r r
L r/ ( )!                (6)

where ω  is a fraction of  possible  configurations  for an r-mer in the phase space
determined by m , it is virtually a surface fraction of a segment responsible for
stickiness. Now we define the r-particle cavity correlation function (CCF).

y g(r) (r) (r)= exp( )βε                                   (7)

When r Lij k k m= = −, 1 , the r-particle group becomes a r-mer associate. By

substituting eqs.(3)(4) and (6) into eq.(7), we have an useful expression of the r-
particle CCF  for a r-mer associate.
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where L represents all Lk.
To obtain the Helmholtz function, we use its functional derivative with

respect to the Mayer function of a r-particle group, which is related to the r-particle
CCF by the following equation.
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From eq.(3) we have
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Substituting into eq.(9), integrating from Lk- to Lk+ and 0 to τ −1 , and using eq.(8),

we have
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.
From eq.(11), we can use thermodynamics to obtain an equation of state.
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As shown in eq.(11), to obtain the Helmholtz function and then the equation of
state, we must have the information of the r-particle CCF for an r-mer chain with a
special configuration. Unfortunately, it is almost impossible to obtain it theoretically
for polymers at present. We then approximate it by a product of two contributions: a
chemical contribution ( )1 − α r  dependent on the degree of association, and a physical
contribution expressed by the product of nearest-neighbour effective two-particle
CCFs y

i i

e
S S +1

2( )   and the product of next-to-nearest-neighbour effective two-particle

CCFs y
i i

e
S S +2

2( )  . The correlations between two particles apart from more than one

particle are reasonably neglected.
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Substitution into eqs.(11) and (12) yields:

[ ]β α α α αA A N r r( ) ( ) / ln( ) ( ) /− = = − + −0 1 10 (14)
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If we have density dependence of those nearest-neighbour and next-to-nearest-
neighbour effective two-particle CCFs, and the equation of state for corresponding
monomers (α=0), we can obtain an equation of state for a chain fluid (α=1). Also we
can study the contribution of chemical association by these equations.

Hard-Sphere-Chain Reference Term
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The density dependence of the effective two-particle CCF y
i i

e
S S +1

2( )  for the nearest-

neighbour pair can be accurately derived from the rigorous Tildesley-Streett equation
[12]. The density dependence of the effective two-particle CCF y

i i

e
S S +2

2( )  for the next-to-

nearest-neighbour pair is obtained by fitting computer simulation data of
compressibility factors for linear homonuclear hard-sphere trimers. Carnahan-Starling
equation is used for the corresponding monomer system to express A(α=0) and
Z(α=0). The final residual Helmholtz function and the equation of state for
homonuclear HSCFs [1] are then obtained by substituting α=1 into eqs.(11) and (15).
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where η πρ σ= 0
3 6/  is the reduced density, a, b and c are functions of chain length.

Square-Well Perturbation Term

For practical reason, we do not try to find correlation functions for square-well
fluids. Instead, we use a perturbation term from Alder et al’s work [7].
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where 
~

/T kT= ε is the reduced temperature, ε  is the depth of the square well,
Amn are numerical coefficients.

Contribution by Chemical Association

We consider a pure-component system composed of N 0  spherical molecules

with number density ρ 0 0= N V/ .  Associated dimers with bond length L  can be
formed by these molecules. With r=2, eqs.(14) become
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From thermodynamics, we have the corresponding contribution to the compressibility
factor due to association,
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From eqs.(8) and (13), we have
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where the sticky parameter τ βδε− = −1 1e , δε  is the sticky or association energy,

y
i i

e
S S +1

2( )  is the effective two-particle CCF  for the nearest-neighbour pair calculated in

previous work [1]. Equation (21) has been satisfactory tested by computer-simulation
data [13] for an associated hard-sphere-dumbbell fluid (a mixture of hard-sphere
dimers and linear hard-sphere quadrimers) at different associating strength.

3. EQUATION OF STATE AND VLE FOR  FLUID MIXTURES

For fluid mixtures, eqs.(1) and (2) can still be used for residual Helmholtz
function Ar and the compressibility factor Z. The difference from that for pure
substance lies in the following. For the HSCF contribution, instead of Carnahan-
Starling equation, Mansoori-Carnahan-Starling-Leland equation is used for the
corresponding monomer system to express A(α=0) and Z(α=0), details refer to [1,2].
For the SW contribution, a mixing rule is used for calculate the reduced temperature,
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( )σ σ σij i j= + / 2
 ,  ( )( )ε κ ε εij ij i j= −1

1 2/

(25)

where φi is volume fraction of segment i. For ASS contribution, another mixing rule is
used for the cross association between molecules of different kind.

ω ω ω δε δε δεij ii jj ij ii jj= + =( ) / , ( ) /2 1 2                          (26)

Figs. 1-4 show examples of vapor-liquid equilibrium calculations for systems
PS+ toluene, PS+cyclohexane, PEO+water and PVAc+methanol, respectively. The
later two systems involve hydrogen-bonding molecules. With one adjustable
parameter κ12, vapor pressures for solutions in different temperature can be fit quite
satisfactory.
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4. LIQUID-LIQUID EQUILIBRIA

For the calculation of liquid-liquid equilibria, we need a special mixing rule on
the basis of a lattice approach. The Helmholtz function can be expressed as

A A A= +(off - lattice) (CORR) (27)

A f A A pmix
(CORR)

mixlattice) - off - lattice,  = = ∞[ ( ( )]∆ ∆ (28)
f g g= +η η/ ( )1 (29)

where A(off-lattice) can be expressed by eq.(1) with no adjustable parameter, κij=0.
The correction term A(CORR) accounts for the difference between lattice approach and
off-lattice approach. It is introduced because the chain-like molecules are better
represented by a lattice in the high-density liquid state. The ∆mixA(lattice) can be
expressed by any lattice model. f expressed by eq.(29) is introduced to accout for the
density dependence, where g is an empirical coefficient, g=18. Two adjustable
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parameters is used for the revised Freed lattice model developed previously [14]: a
size parameter cr determining the effective volume fraction by
r r c c ci

eff
i rij j rij rjij

= + = −∑( ) ,1 φ (30)

and an exchange energy parameter ∈, they are obtained by fitting LLE data.
Figures 5 and 6 show examples of liquid-liquid-equilibrium calculations for

systems PS+PBD and PS+PVE, respectively. The former shows UCST while the later
exhibits LCST. For good fit, a temperature dependence for the exchange energy
parameter ∈ is better to be used as shown in Fig. 6.
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Mn2 2350= , cr = 0 0758. , ∈= −29 983. . ®®

5.   DISCUSSION AND CONCLUSION

Although the equation developed is semiempirical because of the
approximations inherently introduced during the derivation, it can stand the test of
computer simulation to ensure its sound theoretical backgroud. On the other hand,
the equation has simple form that usually can not be obtained by rigorous theoretical
method. The model developed can be used both for ordinary fluids and for polymers.
Limited by the length, only a few of examples are presented. Further results for a
group contribution method will be reported in the second part of this paper.
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